

Cost Analyses of Fuel Cell Stacks/Systems

DE-FC02-99EE50587

2003 Hydrogen and Fuel Cells Merit Review Meeting

Berkeley, CA

May 19-22

TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390

Reference: D0006

In the initial tasks of the project, Argonne National Laboratory provided modeling support.

Program Manager: Nancy Garland
ANL Technical Advisor: Robert Sutton

TIAX Team

Primary Contact: Eric J. Carlson

Core Team:

Dr. Suresh Sriramulu Stephen Lasher Rebeca Hwang **Argonne National Laboratory System Thermodynamic Model**

Primary Contact: Dr. Romesh Kumar

DOE Objectives

For PEMFC powertrains to be viable in the market place, they must have attractive performance and cost attributes.

Technical Targets				
System	System Efficiency		Cost (\$/kW)	
System	Lillolelloy	2010	2015	
Direct Hydrogen Fuel Cell Power System (including hydrogen storage)	60%		30	
Reformer-based Fuel Cell Power System	45%	45		

Barriers

- N. Cost (Fuel-Flexible Fuel Processor)
- O. Stack Material and Manufacturing Cost

PEMFC powertrains are competing with mature but still evolving internal combustion engine (spark or compression ignition) technology.

Project Objectives

To assist DOE in the development of fuel cell system technologies by providing cost and manufacturing analysis.

- To develop an independent cost estimate of PEMFC system costs including a sensitivity analysis to:
 - Operating parameters
 - Materials of construction
 - Manufacturing processes
- To identify opportunities for system cost reduction through breakthroughs in component and manufacturing technology
- To provide annual updates to the cost estimate for the duration of the project

Project Approach

In this multi-year program, we developed a baseline system configuration and cost and then looked at various system scenarios and the impact of future technology developments.

Task 1:
PEMFC
System
Technology
Synopsis

Task 2:
Develop Cost
Model and
Baseline
Estimates

Task 3:
Identify
Opportunities
for System
Cost Reduction

Tasks 4, 5, 6 & 7: Annual Updates

- Develop baseline system specification
- Project technology developments
- Assess impact on system performance
- Identify manufacturing processes

- Develop cost model
- Specify manufacturing processes and materials
- Develop production scenarios

Year 1 (1999))

◆ Baseline cost estimate

- Perform sensitivity analysis to key parameters
- Evaluate the impact of design parameters and potential technology breakthroughs on subsystem and overall system costs
- Identify and prioritize opportunities for cost reduction in transportation PEMFC systems
- Obtain industry feedback

Year 2 (2000)

- Assess technology evolution
- Update baseline cost estimate based on technology developments

,, ,, ,, ,, ,

– Years 3, 4, and 5—

Ends 3/04

Project Accomplishments

- Developed comprehensive system configuration and activities-based cost estimate for this system produced in high volume with near term available technology
 - Presented results to the fuel cell industry for feedback and incorporated this into a revised baseline cost estimate
 - Presented results to National Research Council review
 - Identified key cost drivers and development areas
- Provided program support to OATT by evaluation of system operating and future scenarios
 - High efficiency versus High Power
 - Hybrid scenarios (\$/kW versus rated power)
 - Future reformer and direct hydrogen scenarios
- Program support in development of hydrogen cost targets
- Support for other DOE efforts including Full Choice Project, Report to Congress, and Annex XV
- Fundamental analysis of stack cost versus platinum loading

We have estimated the system cost up to and including factory costs for annual production volumes of 500,000.

Individual components have been distributed between the major subsystems as shown below.

 Startup Battery System Controller System Packaging Electrical
Safety Expander s Burner introl

The fuel cell subsystem dominates the cost of the reformate system based on near-term technology but produced at high volume.

Consideration of uncertainty in the baseline model assumptions still leads to a cost over \$200/kW.

The fuel cell stack dominates cost of the fuel cell subsystem, however, thermal management is critical to system size.

Basis: 50 kWe net, 500,000 units/yr. Not complete without assumptions.

Platinum and the electrolyte membrane are the major contributors to the stack cost.

*Basis: 50 kWe net, 500,000 units/yr. Not complete without assumptions.

While power density determines the actual amount of material in the system. Parasitic power losses further increase size and cost.

System simplification and cost reduction of components will be needed to reduce the cost of non-catalytic materials and components.

*Basis: 50 kWe net, 500,000 units/yr. Not complete without assumptions.

Some of the cost benefits of reducing total rated power in a hybrid system will be offset by increased cost per kW arising from fixed costs.

*Basis: 50 kWe net, 500,000 units/yr. Not complete without assumptions.

The potential for reduction in platinum loading was estimated by calculating 'best-case' cathode polarization curves for various operating conditions.

$$V^{cell}$$
 = V^{OC} - J R_{total} - η_c - η_a

Baseline experimental activity data (h. Vs. i)

- 60 C
- 1 atm O₂
- Aqueous electrolyte
- 3.5 nm Pt

Correct data for:

Temperature (T) Partial pressure (P₀₂)

- electrolyte
- Alloy catalyst activity

Account for:

Loading

- Area utilization
- Particle size effects

h. Vs. J for any T, P, Loading

$$i = \gamma i_0 \exp \left| \frac{\eta}{b} \right|$$

Tafel Kinetics
$$i = \gamma i_0 \exp\left[\frac{\eta}{b}\right]$$

$$i_0 = k \left(sP_{O_2}\right)^n \exp\left[-\frac{E_a}{RT}\right]$$

Parameter

i₀ - Exchange current density

b - Tafel Slope

k - pre-exponential factor

n - Reaction order

s - O₂ solubility

E_a - Activation energy

Value

Experimental data¹

Experimental data¹

2 x Pt activity (Pt:Ni)²

1 (Exp. data)¹

3 x that in water (Exp.)³

28 kJ/mol (Exp.)¹

U. Paulus, T. J. Schmidt, H. A. Gasteiger, R. J. Behm, J. Electroanal. Chem., 495 (2000) 134.

P. N. Ross, N., Markovic, T. J. Schmidt, V. Stamenkovic, in DOE 2001 Review, OTT Fuel Cells program, ORNL (2001)

S. Gottesfeld and T. Zawodzinski in R. C Alkire, H. Gerischer, D. M. Kolb, C. W. Tobias (Eds.), Adv. Electrochem. Sci. Eng. V 5, Wiley-VCH, Weinhem (1997).

A minimum platinum loading of 0.2 - 0.4 mg/cm2 is needed to achieve DOE power density goals (0.4 A/cm² @ 0.8 V) at 120 C.

Operating Conditions: 3 atm, 2x Pt activity, $R_t = 0.1 \Omega$ cm⁻², 3.5 nm catalyst diameter

Voltage losses at the anode will lower the estimated curves.

Increasing stack costs due to non-catalytic materials limits the benefit of reducing platinum loading below a certain value.

In both reformate and direct hydrogen cases, the minimum in stack material costs occurs around cathode platinum loadings of 0.2 mg/cm².

Assumptions	Hydrogen	Reformate
Anode overpotential (mV)	0	30
Membrane Resistance (m Ω cm 2)	50	50
Electronic Reisistance (mΩ cm²)	20	20

Operating Conditions:

0.8 V, 3 atm, 160 C, 3.5 nm Particles, 2x Pt activity

The cell resistance (ionic + electronic) has a significant influence on the cost-effectiveness of platinum usage in the stack.

Assumptions: Anode Pt loading = 50 % of that of the cathode, Platinum cost = 18,000 \$/kg, Membrane cost = 50 m^2 , Bipolar + coolant plate = 22 m^2 , GDL = 31 m^2

Operating Conditions: 0.8 V, 3 atm, 160 C, 3.5 nm Particles, 2x Pt activity

The platinum content for the DOE Goals scenario is much lower than the other cases due to its very aggressive cathode loading assumption.

MEA Precious Metal Calculation	Current Reformate	Future Reformate	Future Hydrogen	DOE Goals Reformate
Cathode Pt Loading, mg/cm ²	0.4	0.2	0.2	0.05
Anode Pt Loading, mg/cm ²	0.4	0.1	0.1	0.025
Power Density, mW/cm²	248	400	600	320
Gross System Power, kW	56	53	53	56
Cathode Pt, g	90	26	18	8.8
Anode Pt, g	90	13	8.8	4.4
Anode Ru, g	45	6.6	0	2.2
Stack Precious Metals, g	225	46	27	15

Projection of future system costs were made by assuming higher power densities, advances in reformer technology, and compressed hydrogen storage.

Parameter	Baseline	Future Reformate	Future Hydrogen
Stack Improvements ◆ Current Density (mA/cm²) ◆ Power Density (mW/cm²) ◆ Cathode Pt (mg/cm²) ◆ Anode Pt (mg/cm²) ◆ Anode Ru (mg/cm²)	310 250 0.4 0.4 0.2	500 400 0.2 0.2 0.0	760 610 0.2 0.1 0.0
Fuel Processor Improvements		 Short contact time reactor Improved shift catalysts No sulfur bed No PrOX 	 No Fuel Processor Compressed H₂ storage Simpler tailgas burner
System and Material Cost Reduction		Reduced Sensor, CEM, and Membrane costs	

One can project significant cost reductions due to advances in technology, however, further improvements are required to achieve DOE goals.

Next Steps

- Provide 2003/2004 Cost Update
- Provide program support as required

